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We develop a general microscopic theory of dc Josephson effect in hybrid superconductor–normal-metal–
superconductor structures with ballistic electrodes and spin-active normal-metal–superconductor �NS� inter-
faces. We establish a direct relation between the spectrum of Andreev levels and the Josephson current which
contains complete information about nontrivial interplay between Andreev reflection and spin-dependent in-
terface scattering. The system exhibits a rich structure of properties sensitive to spin-dependent barrier trans-
missions, spin-mixing angles, relative magnetization orientation of interfaces, and the kinematic phase of
scattered electrons. We analyze the current-phase relations and identify the conditions for the presence of a
�-junction state in the systems under consideration. We also analyze resonant enhancement of the supercurrent
in gate-voltage-driven nanojunctions. As compared to the nonmagnetic case, this effect can be strongly modi-
fied by spin-dependent scattering at NS interfaces.
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I. INTRODUCTION

Spin-sensitive Andreev reflection in superconducting hy-
brid structures yields a number of interesting and nontrivial
effects which have been addressed and studied in the litera-
ture. Already more than three decades ago it was realized
that spin-flip electron tunneling through a magnetic interface
between two superconductors may cause a sign change in the
Josephson current and yield the so-called �-junction state in
superconducting weak links.1 The same effect can also occur
in superconductor-ferromagnet-superconductor �SFS� junc-
tions where the Josephson critical current was predicted to
oscillate as a function of the ferromagnet layer thickness also
leading to formation of the �-junction state.2,3 These theo-
retical predictions were confirmed in experiments with SFS
junctions.4,5

More recently it was realized6,7 that the Cooper pair wave
function in superconductor-ferromagnet �SF� hybrids may
change its symmetry from a singlet in a superconductor to a
triplet in a ferromagnet. This so-called odd-frequency pairing
state6 implies that Cooper pairs can penetrate deep into the
ferromagnet thus causing the long-range proximity effect in
SF systems. Experimental evidence for such long-range co-
herent behavior of SF hybrids was discussed in Ref. 8.

Another interesting realization of this long-range proxim-
ity effect is the possibility for nonvanishing Josephson cur-
rent to flow across superconducting weak links containing
strong ferromagnets or the so-called half �H� metals. Note
that spin-singlet Cooper pairs cannot penetrate into H metals
because such metals are fully spin-polarized materials acting
as insulators for electrons with one of the two spin direc-
tions. Hence, no supercurrent carried by spin-singlet
Cooper pairs can occur in superconductor–half-metal–
superconductor �SHS� junctions. Superconducting correla-
tions can nevertheless survive deep inside strong ferromag-
nets provided there exists a mechanism for spin-flip
scattering at both half-metal–superconductor �HS� interfaces

of the junction. This mechanism allows for conversion of
spin-singlet pairing in superconductor �S� electrodes into
spin-triplet pairing in H metals, thus making it possible for
the supercurrent to flow across the system. A theory of this
nontrivial Josephson effect in SHS junctions was recently
addressed by a number of authors.9–11 Experimental results12

appear to support that nonvanishing supercurrent can indeed
flow across sufficiently thick SHS junctions.

The main goal of this paper is to develop a general theory
of dc Josephson effect in superconductor–normal-metal–
superconductor �SNS� heterostructures with spin-active in-
terfaces. Previously13 we already demonstrated that spin-
dependent scattering at such interfaces yields a number of
interesting and nontrivial properties of nonlocal Andreev re-
flection in three-terminal normal-metal–superconductor–
normal-metal devices. Here we find that both the Josephson
critical current and the current-phase relation in SNS junc-
tions are very sensitive to particular values of �a� spin-
dependent interface transmissions, �b� spin-mixing angles,
and �c� the electron kinematic phase showing a rich variety
of features which can be detected and studied in future ex-
periments.

One possible experimental realization of SNS junctions
with spin-active interfaces is achieved by placing a thin layer
of some magnetic material at the interfaces between super-
conducting and normal metals. In this case transmission
probabilities for spin-up and spin-down electrons propagat-
ing through such interfaces may take different values. In ad-
dition, the scattering phase of incoming electrons may also
depend on their spin states. This physical situation can be
modeled by a spin-active interface described by two �spin-up
and spin-down� transmission probabilities and by the so-
called spin-mixing angle, which is just the difference be-
tween the scattering phases for the spin-up and spin-down
states of incoming electrons. Yet one more parameter—the
kinematic phase—should be introduced in order to account
for the phase acquired by an electron between successive
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scattering events at normal-metal–superconductor �NS� inter-
faces. This phase is essentially set by the product of the
Fermi momentum and the distance covered by an electron
between two scattering events. Since the electron momentum
can be controlled �shifted� by applying the gate voltage, the
system can be periodically driven to and out of resonance,
thereby rendering a possibility to experimentally investigate
the dependence of the Josephson current on the kinematic
phase.

The structure of the paper is as follows. In Sec. II we will
define our model and specify some key equations that will be
employed in our further consideration. Section III is devoted
to the analysis of Andreev bound states in SNS junctions
with spin-active interfaces. In Sec. IV we will demonstrate
that the Josephson current in our structure can be directly
expressed in terms of the Andreev spectrum and derive the
general expression for this current. This expression will then
be analyzed in Sec. V in a number of interesting limits. In
Sec. VI we will briefly summarize our main observations.
Some technical details of our analysis will be presented in
Appendixes A and B.

II. MODEL AND BASIC EQUATIONS

For our analysis we will employ the standard model of a
planar ballistic SNS junction �Fig. 1� with spin-active NS
interfaces �located at x=d1 and x=d2� and cross-section area
A. Outside an immediate vicinity of the interface regions
quasiparticle wave functions can be represented as a sum of
two rapidly oscillating exponents

� = �+�x�eipFxx+ip�� + �−�x�e−ipFxx+ip��, �1�

where x is coordinate normal to the NS interfaces, � repre-
sents the coordinates in the transversal directions, and pFx

=�pF
2 −p�

2�0 is the normal component of the Fermi momen-
tum. The wave functions ���x� vary smoothly at atomic
distances. Applying the standard Andreev approximation it is
easy to demonstrate that ���x� obeys the following equa-
tion:

�� � i	3
Fx
�

�x
− � 0 i�2��x�

− i�2��x�� 0
���� = 0, �2�

where 	̂3 is the Pauli matrix in the Nambu space, �i are the
Pauli matrices in the spin space, 
Fx= pFx /m, and � is the
superconducting order parameter which is assumed to be
spatially constant equal to 	�1	e−i/2 �	�2	ei/2� in the first
�second� superconducting electrode and is set equal to zero

�=0 in the normal metal. Equation �2� does not apply at the
interfaces and should be supplemented by the proper bound-
ary conditions which account for spin-sensitive electron scat-
tering. In order to formulate these boundary conditions we
will employ the general S-matrix formalism. For instance,
matching of the quasiparticle wave functions at the first in-
terface is performed with the aid of the following equation:

��1−

�1�+
� = �Ŝ11 Ŝ11�

Ŝ1�1 Ŝ1�1�

���1+

�1�−
� . �3�

Here �1+, �1− and �1�+, �1�− are the quasiparticle wave-
function amplitudes, respectively, at superconducting and

normal sides of the first interface. The matrices Ŝij are diag-
onal in the Nambu space,

Ŝij = �Sij 0

0 S� ij
� , �4�

where Sij and S� ij are the building blocks of the full electron
and hole interface S matrices14

S1 = �S11 S11�

S1�1 S1�1�
�, S� 1 = �S�11 S�11�

S�1�1 S�1�1�
� , �5�

S1S1
+ = 1, S� 1S� 1

+ = 1. �6�

In general electron and hole S matrices do not coincide with
each other but obey the following relation:

S� 1�p�� = S1
T�− p�� . �7�

Electron scattering at the second interface is described analo-
gously with the aid of the matrices S2 and S� 2, which have the
same structure as in Eqs. �5�–�7�.

III. ANDREEV STATES

With aid of the above equations it is convenient to analyze
the spectrum of Andreev bound states in SNS heterostuctures
with spin-active interfaces. For this purpose it is necessary to
solve Eq. �2� and explicitly find quasiparticle wave functions
of our system. In the first superconductor x�d1 the wave
function has the form

�I = �− i�2e−i/2a1A1

A1
�eipFx�x−d1�e�1�x−d1�

+ � A2

i�2ei/2a1A2
�e−ipFx�x−d1�e�1�x−d1�, �8�

where �m=�	�m	2−�2 /
Fx and am= �−�+��2− 	�m	2� / 	�m	
�m=1,2�. The functions am��� are analytic in the upper half
plane of the complex variable �. For real � they read

am��� =

− � + i�	�m	2 − �2

	�m	
, 	�	 � 	�m	 ,

− � + ��2 − 	�m	2sgn���
	�m	

, 	�	 � 	�m	 ,� �9�

while for purely imaginary values of � we have

FIG. 1. SNS junction with spin-active interfaces located at x
=d1 and x=d2.
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am�i�� = i
��2 + 	�m	2 − �

	�m	
, � � 0. �10�

In the normal metal d1�x�d2 and in the second supercon-
ductor x�d2 one has, respectively,

�N = � ei��x−d1�/
FxB1

e−i��x−d1�/
FxB2
�eipFx�x−d1� + �e−i��x−d1�/
FxB3

ei��x−d1�/
FxB4
�e−ipFx�x−d1�

�11�

and

�II = � C1

i�2e−i/2a2C1
�eipFx�x−d2�e−�2�x−d2�

+ �− i�2ei/2a2C2

C2
�e−ipFx�x−d2�e−�2�x−d2�. �12�

All coefficients A1,2, B1,2,3,4, and C1,2 are vectors in the spin
space which should be determined from the matching condi-

tions at both NS interfaces. From Eq. �3� at the first interface
�x=d1� we obtain

A2 = S11�− i�2a1e−i/2�A1 + S11�B3, �13�

�i�2a1ei/2�A1 = S�11A1 + S�11�
+ B4, �14�

B1 = S1�1�− i�2a1e−i/2�A1 + S1�1�B3, �15�

B2 = S�1�1A1 + S�1�1�B4. �16�

These equations yield the relation between the amplitudes
for the incoming and outgoing electron and hole waves �re-
spectively, B3, B4, B1, and B2�,

�B1

B2
� = K1�B3

B4
� , �17�

where K1 is the scattering matrix which describes both nor-
mal and Andreev reflections at the first interface. This matrix
has the form

K1 = �S1�1� + a1
2S1�1�2�S�11 − a1

2�2S11�2�−1�2S11� ia1e−i/2S1�1�2�S�11 − a1
2�2S11�2�−1S�11�

ia1ei/2S�1�1�S�11 − a1
2�2S11�2�−1�2S11� S�1�1� − S�1�1�S�11 − a1

2�2S11�2�−1S�11�
� . �18�

Diagonal blocks of this matrix describe electron-electron and
hole-hole amplitudes while off-diagonal blocks account for
electron-hole conversion. One can directly verify that the
matrix K1 is unitary for subgap energies 	�	� 	�1	 at which
no excitations exist in the superconducting electrode I.

Analogously from the matching conditions at the second
interface �x=d2� we obtain

�B3

B4
� = e−i�QK2Q�B1

B2
� , �19�

where K2 is scattering matrix for the second interface at sub-
gap energies 	�	� 	�2	 and we introduced the following no-
tations:

e2ipFx�d2−d1� = e−i�, e−i��d2−d1�/
Fx = q2. �20�

The matrix K2 is defined by Eq. �18� with 1→2 and
↔−. The transfer matrix Q has a simple diagonal struc-
ture,

Q = �q−2�0 0

0 q2�0
� . �21�

It provides the relations between �� amplitudes at both NS
interfaces �on the normal-metal side�,

�N+�d2� = Q−1�N+�d1� , �22�

�N−�d2� = Q�N−�d1� . �23�

Combining Eqs. �17� and �19� we obtain the following
general condition which defines the energies of Andreev
bound states in our system:

P��,p�,� = det	1 − e−i�QK2QK1	 = 0. �24�

Note that scattering properties of the first �second� interface
enter into P only through the matrix K1 �K2� while the trans-
fer matrix Q and the kinematic phase � determine the depen-
dence of the bound-state energy on the thickness of the
normal-metal layer d=d2−d1. It is also worth pointing out
that our Eq. �24� can be rewritten in terms of the effective
energy-dependent scattering matrix15,16

P1��,p�,� = det	S� �p�,�� − A��,�S�p�,��A��,− �	 = 0,

�25�

where

A��,� = �a1�2ei/2 0

0 a2�2e−i/2 � , �26�

S�p� ,��, and S� �p� ,�� are effective electron and hole scatter-
ing matrices

S�p�,�� = �S11�p�,�� S12�p�,��

S21�p�,�� S22�p�,�� � , �27�

S� �p�,�� = ST�− p�,− �� , �28�
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S11�p�,�� = S11 + q−4e−i�S11��1 − q−4e−i�S2�2�S1�1��
−1S2�2�S1�1,

�29�

S12�p�,�� = q−2e−i�/2S11��1 − q−4e−i�S2�2�S1�1��
−1S2�2,

�30�

S21�p�,�� = q−2e−i�/2S22��1 − q−4e−i�S1�1�S2�2��
−1S1�1,

�31�

S22�p�,�� = S22 + q−4e−i�S22��1 − q−4e−i�S1�1�S2�2��
−1S1�1�S2�2.

�32�

The functions P�� ,p� ,� and P1�� ,p� ,� are proportional to
each other with the -independent proportionality factor. The
matrices S�p� ,�� and S� �p� ,�� describe normal-state proper-
ties of our device, while superconductivity is accounted for
by the matrix A�� ,�, which depends on superconducting
order parameters �1,2 and the phase difference .

IV. JOSEPHSON CURRENT: GENERAL EXPRESSIONS

It turns out that the function P�� ,p� ,� �Eq. �24� can be
directly used in order to derive a general and compact ex-
pression for the Josephson current across SNS structure un-
der consideration. In order to accomplish this task we will
use the standard Green’s function formalism.17 The corre-
sponding derivation is presented in Appendix A. It yields the
following result:

I�� = − 2eAT �
�n�0

�
	p�	�pF

d2p�

�2��2

�P�i�n,p�,�/�

P�i�n,p�,�
,

�33�

where �n=�T�2n+1� is Matsubara frequency. Using stan-
dard transformation summation over Matsubara frequencies
in Eq. �33� can be rewritten in terms of the integral

I�� = −
eA
2�
� d� tanh

�

2T
�

	p�	�pF

d2p�

�2��2 Im
�P��,p�,�/�

P�� + i0,p�,�
.

�34�

At energies close to the bound state P becomes a linear func-
tion of the energy variable, P�� ,p� ,�� ��−�B�p� ,�. With
this in mind one can easily check that Eq. �34� correctly
describes the contribution from Andreev bound states. In Ap-
pendix A we also demonstrate that Eqs. �33� and �34� prop-
erly account for the scattering states contribution to I��. We
can also add that momentum integration in Eqs. �33� and
�34� can be transformed into the sum over conducting chan-
nels,

A�
	p�	�pF

d2p�

�2��2 → �
k

. �35�

The above expressions for I�� define the Josephson current
in SNS junctions with spin-active interfaces under very gen-
eral conditions. In various physical situations underlying

symmetries of the model typically limit the number of pa-
rameters of the scattering matrices S1,2. One important ex-
ample was considered in Ref. 11 where we analyzed the
Josephson current across a half-metallic layer in between two
superconducting electrodes. In that case one needs to assume
that spin-active interfaces do not possess inversion
symmetry,9,11 thus allowing for spin-flip scattering. Substitut-
ing the particular form of the scattering matrix11 into the
general expressions for I�� derived here one immediately
recovers the results.11

In this paper we consider another generic type of the scat-
tering matrix describing spin-active interfaces which do pos-
sess inversion symmetry as well as reflection symmetry in
the plane normal to the corresponding interface. Such S ma-
trices can be chosen in the following form:

S11 = S1�1� = S�11
T = S�1�1�

T

= U�����R1↑e
i�1/2 0

0 �R1↓e
−i�1/2�ei�1U+��� , �36�

S11� = S1�1 = S�11�
T = S�1�1

T

= U���i��D1↑e
i�1/2 0

0 �D1↓e
−i�1/2�ei�1U+��� , �37�

S22 = S2�2� = S�22 = S�2�2� = ��R2↑e
i�2/2 0

0 �R2↓e
−i�2/2�ei�2,

�38�

S22� = S2�2 = S�22� = S�2�2 = i��D2↑e
i�2/2 0

0 �D2↓e
−i�2/2�ei�2.

�39�

Here R1�2�↑�↓�=1−D1�2�↑�↓� are spin-dependent reflection co-
efficients of both NS interfaces, �1,2 are spin-mixing angles,
�1,2 are real phase parameters, and U��� is the rotation ma-
trix in the spin space, which depends on the angle � between
polarizations of the two interfaces,

U��� = exp�− i��1/2� = � cos��/2� − i sin��/2�
− i sin��/2� cos��/2�

� .

�40�

We would like to emphasize that—in contrast to the case
studied in Refs. 9 and 11—scattering matrices �36�–�40� con-
serve the projection of the electron spin along the interface
polarization axis and do not allow for spin-flip scattering.

Let us evaluate both the function P�� ,p� ,� and the Jo-
sephson current in the case of noncollinear barriers polariza-
tions. Absorbing the phases �1,2 into the kinematic phase

� = − 2pFxd − �1 − �2, �41�

after some algebra we obtain
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P��,p�,� = ��cos  + W�D1↑,D1↓,�1,D2↑,D2↓,�2,���cos  + W��D1↑,D1↓,�1,D2↑,D2↓,�2,− ��cos2��/2�

+ �cos  + W�D1↓,D1↑,− �1,D2↑,D2↓,�2,���cos  + W��D1↓,D1↑,− �1,D2↑,D2↓,�2,− ��sin2��/2�

− sin2��/2�cos2��/2��	�R1↑e
i�1/2 − �R1↓e

−i�1/2	2�1 + a1
2�2 − 4a1

2 sin2 �1

��	�R2↑e
i�2/2 − �R2↓e

−i�2/2	2�1 + a2
2�2 − 4a2

2 sin2 �2
1

4a4D1↑D1↓D2↑D2↓
� , �42�

where

W�D1↑,D1↓,�1,D2↑,D2↓,�2,�� = −
1

2a1a2
�D1↑D1↓D2↑D2↓

�q4�e−i�1 − a1
2�R1↑R1↓��e−i�2 − a2

2�R2↑R2↓� + q−4��R1↑R1↓ − a1
2ei�1�

���R2↑R2↓ − a2
2ei�2� − e−i���R1↑e

−i�1/2 − a1
2�R1↓e

i�1/2���R2↑e
−i�2/2 − a2

2�R2↓e
i�2/2�

− ei���R1↓e
−i�1/2 − a1

2�R1↑e
i�1/2���R2↓e

−i�2/2 − a2
2�R2↑e

i�2/2�� . �43�

Equations �33�, �42�, and �43� fully determine the Josephson
current in ballistic SNS junctions with spin-active interfaces
and represent the central result of this paper. In the spin-
isotropic limit this result reduces to that obtained in Ref. 18.

V. JOSEPHSON CURRENT: SPECIFIC LIMITS

The above general expression for the Josephson current
contains a lot of information which can be conveniently il-
lustrated by considering specific limiting cases.

A. Small spin-mixing angles

Lets us first analyze the limit of small spin-mixing angles
�1 ,�2�1. In the tunneling limit �D1↑ ,D1↓ ,D2↑ ,D2↓�1� the
expression for the Josephson current defined in Eqs. �33�,
�42�, and �43� reduces to a much simpler result

I�� = − 2eAT sin  �
�n�0

�
	p�	�pF

d2p�

�2��2

� Re
4a1a2

�D1↑D1↓D2↑D2↓

�1 − a1
2��1 − a2

2��q4 + q−4 − 2 cos ��
. �44�

This expression coincides with the result obtained in Ref. 18

for superconductor–insulator–normal-metal–insulator-super-
conductor structures with effective spin-isotropic interface
transmissions D1=�D1↑D1↓ and D2=�D2↑D2↓.

In the opposite limit of the highly transparent interfaces
R1↑ ,R1↓ ,R2↑ ,R2↓�1 and for small spin-mixing angles, Eq.
�33� reduces to the standard expression for the Josephson
current in SNS structures with fully transparent interfaces.19

Interestingly, the Josephson current turns out not to depend
on the misorientation angle � in both limits of weakly and
highly transparent barriers at NS interfaces. At intermediate
barrier transmissions the dependence of the supercurrent on
the angle � formally exists but remains very weak �see Figs.
2 and 3�. It is also important to point out that no transition to
the �-junction regime occurs in the limit of the zero-spin-
mixing angles.

B. Arbitrary spin-mixing angles

In a general case of arbitrary spin-mixing angles the junc-
tion behavior becomes much richer. In particular, the system
may now undergo transitions between 0 and � states driven
by varying kinematic phase �, misorientation angle �, and
temperature. In Fig. 4 we present typical current-phase rela-
tions as well as the critical current dependence on the mis-
orientation angle �. We observe the �-to-0-junction transi-

FIG. 2. �Color online� Josephson current across single-channel
SNS junction with spin-active interfaces for d=�0=vF / �2�Tc� and
zero-spin-mixing angles. The solid curve illustrates the current-
phase relation, while dashed and dotted lines show the dependen-
cies of the critical current, respectively, on the kinematic phase �
and on the misorientation angle �. FIG. 3. �Color online� The same as in Fig. 2 for d=4�0.
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tion occurs approximately at ��1.6 for the chosen values of
the parameters.

C. Short-junction limit

An important limiting case is realized provided the thick-
ness of the normal-layer tends to zero d→0. In practice, this

condition implies d��0 off resonance, while at resonance
this inequality turns out to be more stringent in the limit of
small barrier transmissions.18 In this short-junction limit the
general expression for the Josephson current becomes much
simpler. For example, if the scattering matrix at the right
interface is proportional to unity and 	�1	= 	�2	=�, we re-
cover the result of Barash and Bobkova,20

I = �
k

eD� sin 

2�1 − �R + D cos �2�sin �+ tanh�� cos �+

2T
�

− sin �− tanh�� cos �−

2T
�� , �45�

where D=�D1↑D1↓, R=�R1↑R1↓, and

�� =
�1

2
�

1

2
arccos�R + D cos  . �46�

Note, that in a general case one has R+D�1. In the case of
nontrivial scattering at the second collinear interface we
again arrive at the Josephson current in form �45�, but obtain
more complicated expressions for R , D , ��,

R =
�R1↑R1↓cos �2 + �R2↑R2↓cos �1 − �R1↑R2↓cos���2 − �1�/2 − � − �R2↑R1↓cos���1 − �2�/2 − �

�1 + R1↑R2↑ − 2�R1↑R2↑cos���1 + �2�/2 − ��1 + R1↓R2↓ − 2�R1↓R2↓cos���1 + �2�/2 + �
,

D =
�D1↑D1↓D2↑D2↓

�1 + R1↑R2↑ − 2�R1↑R2↑cos���1 + �2�/2 − ��1 + R1↓R2↓ − 2�R1↓R2↓cos���1 + �2�/2 + �
. �47�

As for ��, we should also substitute �1 in Eq. �46� by � given by

� = arctan
sin��1 + �2� − sin���1 + �2�/2 − ��R1↓R2↓ − sin���1 + �2�/2 + ��R1↑R2↑

cos��1 + �2� + �R1↑R2↑R1↓R2↓ − cos���1 + �2�/2 − ��R1↓R2↓ − cos���1 + �2�/2 + ��R1↑R2↑
. �48�

The last expression applies provided its denominator takes
positive values, otherwise � should be added to the right-
hand side of Eq. �48�.

Current experimental techniques permit measuring Jo-
sephson current through junctions with few conducting chan-
nels formed, e.g., by single-wall carbon nanotubes21–23 or
metallo-fullerenes.24 In this case one can effectively tune the
Josephson current by applying the gate voltage to the junc-
tion. This kind of measurements is essentially equivalent to
detecting the � dependence of the supercurrent. Changing
the gate voltage �or the phase �� one can drive the system
toward resonance, thereby reaching substantial enhancement
of the critical current. This resonance effect was experimen-
tally demonstrated, e.g., in Ref. 21. In the case of SNS junc-
tions with spin-active interfaces considered here the form of
the resonant current peak becomes much more complicated.
The corresponding examples are presented in Figs. 5–7.

�3 �2 �1 0 1 2 3
0.0

0.5

1.0

1.5

�

I c
�e

T
c

FIG. 5. �Color online� The critical Josephson current for a short
collinear ��=0� single-channel SNS junction with D1↑=D2↑=0.6,
D1↓=D2↓=0.3, and �1,2=0. Here we have set T=0.1Tc.

FIG. 4. �Color online� The current-phase relation in single-
channel SNS junctions with spin-active interfaces for d=4�0 and
nonzero spin-mixing angles. Also the dependence of the critical
current Ic on the misorientation angle � is shown. The transition
from �- to 0-junction regime occurs with increasing �.
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We observe that at zero-spin-mixing angles �1,2 the form
of the resonance peak is essentially identical to that for non-
magnetic SNS junctions,18 as demonstrated in Fig. 5. The
situation changes dramatically for nonzero values of the
spin-mixing angles. In this case the resonant current peak in
general becomes asymmetric and, on top of that, an addi-
tional dip structure emerges �see Fig. 6�. It is important to
emphasize that the current peak asymmetry is due to differ-
ent spin-up and spin-down transmission values D↑ and D↓.
For equal values D↑ and D↓ the symmetry of the current peak
is restored; however the peak now becomes split into two
and also an additional dip structure remains as long as spin-
mixing angles differ from zero �see Fig. 7�. We also note that
in the case of small barrier transmissions the current reso-
nances are reached at the points cos���1+�2� /2��=1.

The temperature dependence of the Josephson critical cur-
rent for short SNS junctions is shown in Fig. 8. It turns out
that the temperature dependence can be nonmonotonous
even in the limit d��0. Note, however, that this nonmonoto-
nous behavior may occur only in the narrow range of � in
the vicinity of the local minimum of the Ic��� dependence
�cf. Figs. 6 and 7�.

D. Long junctions at nonzero temperatures

In the limit of long junctions with d�vF /T the result for
the Josephson current simplifies dramatically and reads

I = 8eT sin A�
	p�	�pF

d2p�

�2��2
�D1↑D1↓D2↑D2↓

�exp�− 2�Td/vFx�F , �49�

where

F = cos2�

2
Re� 1

�ei�1 + �R1↑R1↓��ei�2 + �R2↑R2↓�
�

+ sin2�

2
Re� 1

�e−i�1 + �R1↑R1↓��ei�2 + �R2↑R2↓�
� .

�50�

Note that even in this limit the above expression retains non-
trivial features related to the presence of spin-active inter-
faces. In particular, for large enough values of the � angles
the �-junction behavior can be realized. Also, the transition
between 0- and �-junction regimes can occur depending on
the value �. For example, in the case of identical weakly
transmitting interfaces the �-junction regime is realized in
the range � /2��1,2�3� /2. This behavior is demonstrated
in Fig. 9. We observe that for smaller values of � the func-
tion F��� takes negative values which corresponds to the
�-junction regime. In contrast, for larger � the function F���
becomes positive and the standard 0-junction regime is real-
ized.

�3 �2 �1 0 1 2 3
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FIG. 6. �Color online� The same as in Fig. 5 for �1=�2=� /4.
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FIG. 7. �Color online� The same as in Figs. 5 and 6 for D1↑
=D2↑=D1↓=D2↓=0.5 and �1,2=� /4.

FIG. 8. �Color online� The critical Josephson current for short
collinear ��=0� single-channel SNS junctions as a function of
temperature.
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�0.4

�0.2

0.0

0.2

0.4

0.6

0.8

Α

F

FIG. 9. �Color online� The function F from Eq. �49� for identical
interfaces with �R↑R↓=0.9 and �1,2=2.0.
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VI. CONCLUDING REMARKS

In this paper we developed a general microscopic theory
of dc Josephson effect in hybrid SNS structures with ballistic
electrodes and spin-active NS interfaces. We evaluated the
spectrum of Andreev levels �Eq. �24� and derived a direct
and simple relation between this spectrum and the Josephson
current in such systems. The latter current can be expressed
in a very compact general form �Eq. �33�, which contains
complete information about nontrivial interplay between An-
dreev reflection and spin-dependent scattering at NS inter-
faces. Our analysis revealed a rich structure of properties
realized in various physical limits. These properties—along
with “usual” dependencies of the supercurrent on the junc-
tion size and temperature—also crucially depend on spin-
dependent barrier transmissions, spin-mixing angles, relative
magnetization orientation of interfaces, as well as on the ki-
nematic phase of scattered electrons.

In particular, we studied the current-phase relation in our
system and demonstrated a broad range of different regimes
including the presence of a �-junction state, which may only
be possible in the case of nonzero spin-mixing angles. We
also analyzed the effect of resonant enhancement of the criti-
cal current which mainly occurs in nanojunctions with few
conducting channels driven by an externally applied gate
voltage. We found that—in contrast to the nonmagnetic
case—spin-dependent scattering may dramatically modify
both the magnitude and the shape of a resonant peak, e.g.,
making it asymmetric and/or providing an additional struc-
ture of dips �cf. Figs. 5–7�. We believe that these and other
our predictions can be directly tested in experiments with
hybrid superconducting-normal proximity structures contain-
ing, e.g., thin ferromagnetic layers. We also anticipate that
further theoretical activity in the field might help to discover
new exciting properties of the systems under consideration.
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APPENDIX A: GREEN’S FUNCTIONS AND
SUPERCURRENT

In order to derive the general expression for the Joseph-
son current let us evaluate the Green’s functions G�x ,x�� for
our system. Inside the normal metal and for d1�x�x��d2
we have

G�x,x�� = � ei��x−d1�/vFxB1
−�x��

e−i��x−d1�/vFxB2
−�x��

�eipFx�x−d1�

+ �e−i��x−d1�/vFxB3
−�x��

ei��x−d1�/vFxB4
−�x��

�e−ipFx�x−d1�, �A1�

while for d1�x��x�d2 we write

G�x,x�� = � ei��x−d1�/vFxB1
+�x��

e−i��x−d1�/vFxB2
+�x��

�eipFx�x−d1�

+ �e−i��x−d1�/vFxB3
+�x��

ei��x−d1�/vFxB4
+�x��

�e−ipFx�x−d1�, �A2�

where Bi
��x� are 2�4 matrices. The coefficients Bi

��x� are
determined from the relations

G�x,x + 0� − G�x,x − 0� = 0, �A3�

� �G�x,x��
�x

�
x�=x−0

− � �G�x,x��
�x

�
x�=x+0

= 2m	3, �A4�

and interface boundary conditions �cf. Eq. �19�

�B1
−�x�

B2
−�x�

� = K1�B3
−�x�

B4
−�x�

� , �A5�

�B3
+�x�

B4
+�x�

� = e−i�QK2Q�B1
+�x�

B2
+�x�

� . �A6�

Equations �A3� and �A4� yield

�B1
−�x�

B2
−�x�

� = �B1
+�x�

B2
+�x�

� +
i

vFx
� T1e−i��x−d1�/vFx

− T2ei��x−d1�/vFx
�e−ipFx�x−d1�,

�A7�

�B3
−�x�

B4
−�x�

� = �B3
+�x�

B4
+�x�

� −
i

vFx
� T1ei��x−d1�/vFx

− T2e−i��x−d1�/vFx
�eipFx�x−d1�,

�A8�

where we introduced the matrices

T1 = �1 0 0 0

0 1 0 0
�, T2 = �0 0 1 0

0 0 0 1
� . �A9�

Finally we obtain

�B1
+�x�

B2
+�x�

� = −
i

vFx
��1 − e−i�K1QK2Q�−1K1� T1ei��x−d1�/vFx

− T2e−i��x−d1�/vFx
�

�eipFx�x−d1� + �1 − e−i�K1QK2Q�−1

�� T1e−i��x−d1�/vFx

− T2ei��x−d1�/vFx
�e−ipFx�x−d1�� , �A10�

�B3
+�x�

B4
+�x�

� = −
i

vFx
��1 − e−i�QK2QK1�−1e−i�QK2QK1

�� T1ei��x−d1�/vFx

− T2e−i��x−d1�/vFx
�eipFx�x−d1�

+ �1 − ei�QK2QK1�−1e−i�QK2Q

�� T1e−i��x−d1�/vFx

− T2ei��x−d1�/vFx
�e−ipFx�x−d1�� . �A11�

Now we are ready to evaluate the Josephson current. Com-
bining Eqs. �A1�, �A2�, �A10�, and �A11� with the general
formula for the current,
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I =
ieTA
4m

�
�n�0

�
	p�	�pF

d2p�

�2��2Sp��1 + 	3�

���x� − �x�x�→xG�x,x�,i�n� , �A12�

we arrive at the following expression:

I�� = − eAT �
�n�0

�
	p�	�pF

d2p�

�2��2 Im Sp��1 + 	3�

���1 − e−i�K1QK2Q�−1 − �1 − e−i�QK2QK1�−1� .

�A13�

Making use of the identities

�K1

�
= −

i

4
�	3K1 − K1	3� , �A14�

�K2

�
=

i

4
�	3K2 − K2	3� , �A15�

� det	A�t�	
�t

= Sp�A−1�t�At��t�det	A�t�	 , �A16�

we verify the full equivalence of Eqs. �A13� and �33�.

APPENDIX B: CHANNEL-MIXING SCATTERING

Within our analysis we assumed that the electron momen-
tum parallel to spin-active NS interfaces is conserved during
scattering at such interfaces. This condition is equivalent to
the absence of mixing between different transmission chan-
nels. The purpose of this appendix is to demonstrate that our
approach can be straightforwardly generalized to the case of
channel-mixing scattering.

Assume that there exist NN transmission channels in a
normal-metal layer that can be scattered into NS1 and NS2
channels, respectively, in the left and right superconductors.
The current amplitudes related via the scattering matrix will
be numbered in the following order: spin-up current ampli-
tudes at the left-hand side, spin-down current amplitudes at
the left-hand side �ordered in the same way as spin-up am-
plitudes, i.e., for the same order of scattering channels�,
spin-up current amplitudes at the right-hand side, and spin-
down current amplitudes at the right-hand side. Thus, the
block S11 describing electron reflection back into the left su-
perconductor is given by the 2NS1�2NS1 matrix, and S1�1�
block which accounts for electron reflection into the normal
layer is presented by the 2NN�2NN matrix. The blocks
S11� ,S1�1 are rectangular with dimensions 2NS1�2NN and
2NN�2NS1 correspondingly. Hence, the total dimensions of
the unitary matrix S1 are 2�NS1+NN��2�NS1+NN�.

The dimensions of blocks S22, S2�2�, S22�, and S2�2 are
2NN�2NN, 2NS2�2NS2, 2NN�2NS2, and 2NS2�2NN.
The blocks corresponding to the hole scattering matrices S�1,2
are characterized by the same dimensions. From the unitary
scattering matrices S1 and S�1 we construct the 4NN�4NN
matrix

M̌1 = � ê1 f̂1

ĝ1 ĥ1

� . �B1�

The matrices ê1 , f̂1 , ĝ1 , ĥ1 have dimensions 2NN�2NN and
are defined by

ê1 = �1 − S�1�1�S�1�1�
+ �−1S�1�1�− ia1S�11

+ �̂y1S11 + ia1
−1�̂y1�

��1 − S11
+ S11�−1S1�1

+ ,

f̂1 = �1 − S�1�1�S�1�1�
+ �−1S�1�1�− ia1S�11

+ �̂y1 + ia1
−1�̂y1S11

+ �

��1 − S11S11
+ �−1S11�,

ĝ1 = − �1 − S�1�1�
+ S�1�1��

−1S�11�
+ �− ia1�̂y1S11 + ia1

−1S�11�̂y1�

��1 − S11
+ S11�−1S1�1

+ ,

ĥ1 = − �1 − S�1�1�
+ S�1�1��

−1S�11�
+ �− ia1�̂y1 + ia1

−1S�11�̂y1S11
+ �

��1 − S11S11
+ �−1S11�. �B2�

Similarly, the unitary matrices S2 , S�2 describing electron
scattering at the right interface are defined by

ê2 = �1 − S�22S�22
+ �−1S�22��− ia2S�2�2�

+
�̂y2S2�2� + ia2

−1�̂y2�

��1 − S2�2�
+ S2�2��

−1S22�
+ ,

f̂2 = �1 − S�22S�22
+ �−1S�22��− ia2S�2�2�

+
�̂y2 + ia2

−1�̂y2S2�2�
+ �

��1 − S2�2�S2�2�
+ �−1S2�2,

ĝ2 = − �1 − S�22
+ S�22�−1S�2�2

+ �− ia2�̂y2S2�2� + ia2
−1S�2�2��̂y2�

��1 − S2�2�
+ S2�2��

−1S22�
+ ,

ĥ2 = − �1 − S�22
+ S�22�−1S�2�2

+ �− ia2�̂y2 + ia2
−1S�2�2��̂y2S2�2�

+ �

��1 − S2�2�S2�2�
+ �−1S2�2. �B3�

Comparing these expressions we note that the matrices
which account for the second interface are obtained from
ones for the first interface by substituting the indices 1→2
and, in addition, by interchanging the indices with and with-
out the primes. The matrices �̂y1,2 have the dimensions
2NS1,2�2NS1,2 and the following structure:

�̂y = i�0 − 1̂

1̂ 0
� , �B4�

where 1̂ is the unity matrix. The dimensions of this matrix
are NS1�NS1 in the expression for �̂y1 and NS2�NS2 in
the expression for �̂y2. As before, we define a1,2

= i���n
2+ 	�1,2	2−�n� / 	�1,2	.

In order to establish the general expression for the current
in our system it is necessary to generalize the parameter q
�defined in Eq. �20� to the current matrix form as well as to

JOSEPHSON CURRENT IN BALLISTIC… PHYSICAL REVIEW B 79, 014521 �2009�

014521-9



incorporate kinematic phases for different transmissions
channels into the matrix structure considered here. This task
is accomplished by defining the following 4NN�4NN ma-
trices:

Q̌ = �Q̂ 0

0 Q̂−1
�, Ž = �0 Ẑ−1

Ẑ 0
� . �B5�

The diagonal 2NN�2NN matrix Q̂ reads

Q̂ = �
q1

�

qNN

q1

�

qNN

� . �B6�

Here the indices label the conducting channels, and we de-
fined qk=exp��nd /2vFk� with vFk standing for the x compo-
nent of the Fermi velocity for a given conductance channel.

This structure of the matrix Q̂ stems from the channel-
ordering convention adopted here. We also point out that the
Fermi velocities for spin-up and spin-down electrons coin-
cide for each transmission channel since both normal metal
and superconducting electrodes are assumed to be nonmag-
netic.

Similarly, the matrix Ẑ has the form

Ẑ = �
z1

�

zNN

z1

�

zNN

� , �B7�

where zk=exp�ipFkd�.
With the aid of these matrices we derive the contribution

to the Josephson current I+ defined by positive Matsubara
frequencies as

I+ = − eT �
�n�0

d

d
ln P�� , �B8�

where

P�� = det	ei/2ŽM̌Q1 − e−i/2M̌Q2Ž	 . �B9�

The matrices M̌Q1,2 are defined as

M̌Q1,2 = Q̌M̌1,2Q̌ . �B10�

The negative Matsubara frequencies contribution I− is ob-
tained from I+ by the substitution qk→qk

−1 and a1,2→−a1,2
−1 .

Provided the symmetry defined in Eq. �7� holds, the relation
I−= I+ follows immediately.

In the absence of channel mixing the function P�� is
factorized into the product of contributions from independent
channels. Accordingly, the supercurrent is expressed as a
sum over these channels. In this case the function P�� co-
incides with that derived above in this paper and the corre-
sponding expression for the current reduces to that defined in
Eqs. �33�, �42�, and �43�.
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